

Polynomial

Prerequisites

Consider a polynomial P(x).

- \bullet Degree of P(x) is equal to the highest exponent of the variable x in P(x).
- P(x) is divisible by Q(x) if and only if exist a polynomial R(x) such that: $P(x) = R(x) \times Q(x)$
- \Leftrightarrow α is a root of P(x) (solution or zero):
 - \circ P(α) = 0.
 - o P(x) is divisible by $x \alpha$, then P(x) can be written in form of P(x) = $(x \alpha)Q(x)$ where deg(Q) = deg(P) 1
 - \circ Remainder of the Euclidean division of P(x) by Q(x) is zero.

Euclidean division is a method to divide a polynomial P(x) by another Polynomial Q(x) where $deg(P) \ge deg(Q)$

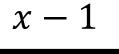
How to perform Long Division?

Before, we know that if we divide a number by another using long division, the Euclidean formula is: Dividend = $divisor \times quotient + remainder$ And this formula is unique.

This process is same for the polynomials but there is a little difference.

Example 1: Consider the two polynomials $P(x) = x^3 + 2x^2 + 3x - 1$ and Q(x) = x - 1.

$$x^3 + 2x^2 + 3x - 1$$
 $x - 1$

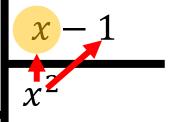


The two polynomials must be written in decreasing order of exponent of the variable x

Example 1: Consider the two polynomials $P(x) = x^3 + 2x^2 + 3x - 1$ and Q(x) = x - 1.

$$-\frac{x^{3} + 2x^{2} + 3x - 1}{x^{3} - x^{2}}$$

$$3x^{2} + 3x - 1$$



$$\frac{x^3}{x} = x^2$$

Example 1: Consider the two polynomials $P(x) = x^3 + 2x^2 + 3x - 1$ and Q(x) = x - 1.

$$-\frac{x^3 + 2x^2 + 3x - 1}{x^3 - x^2}$$

$$-\frac{3x^2 + 3x - 1}{3x^2 - 3x}$$

$$6x - 1$$

$$\frac{x-1}{x^2+3x}$$

$$\frac{3x^2}{x} = 3x$$

Example 1: Consider the two polynomials $P(x) = x^3 + 2x^2 + 3x - 1$ and Q(x) = x - 1.

$$-\frac{x^3 + 2x^2 + 3x - 1}{x^3 - x^2}$$

$$-\frac{3x^2 + 3x - 1}{3x^2 - 3x}$$

$$-\frac{6x-1}{6x-6}$$

$$\frac{x-1}{x^2+3x+6}$$

$$\frac{6x}{x} = 6$$

Example 1: Consider the two polynomials $P(x) = x^3 + 2x^2 + 3x - 1$ and Q(x) = x - 1.

$$-\frac{x^3 + 2x^2 + 3x - 1}{x^3 - x^2} \qquad \frac{x - 1}{x^2 + 3x}$$

$$-\frac{3x^2 + 3x - 1}{3x^2 - 3x}$$

$$-\frac{6x-1}{6x-6}$$

$$\frac{x-1}{x}$$

$$x^2 + 3x + 6$$

Dividend: P(x)

Divisor: Q(x)

Quotient: $x^2 + 3x + 6$

Remainder: 5

$$P(x) = (x^2 + 3x + 6)(x - 1) + 5$$

Example 1: Consider the two polynomials $P(x) = x^3 + 2x^2 + 3x - 1$ and Q(x) = x - 1.

$$-\frac{x^3 + 2x^2 + 3x - 1}{x^3 - x^2} \qquad \frac{x - 1}{x^2 + 3x}$$

$$-\frac{3x^2 + 3x - 1}{3x^2 - 3x}$$

$$-\frac{6x-1}{6x-6}$$

$$\frac{x-1}{x^2+3x+6}$$

Remark:

Remainder is $5 \neq 0$ so:

- P(x) is not divisible by Q(x)
- 1 is not a root of P(x).

Example 2:

Consider the two polynomials:

$$P(x) = -2x^4 + 5x^3 + 5x^2 - 5x - 3 \quad -2x^4 - x^3$$

and

$$Q(x) = 2x + 1.$$

Example 2:

Consider the two polynomials:

$$P(x) = -2x^4 + 5x^3 + 5x^2 - 5x - 3 \quad -2x^4 - x^3$$

and

$$Q(x) = 2x + 1.$$

Example 2:

Consider the two polynomials:

$$P(x) = -2x^4 + 5x^3 + 5x^2 - 5x - 3 \quad -2x^4 - x^3$$

and

$$Q(x) = 2x + 1.$$

Example 2:

Consider the two polynomials:

$$P(x) = -2x^4 + 5x^3 + 5x^2 - 5x - 3 \quad -2x^4 - x^3$$

and

$$Q(x) = 2x + 1.$$

Remark:

Remainder is 0 so:

- P(x) is divisible by Q(x).
- $-\frac{1}{2}$ is a root of P(x).
- P(x) = (2x + 1)Q(x)

$$-2x^{4} + 5x^{3} + 5x^{2} - 5x - 3$$

$$-2x^{4} - x^{3}$$

$$-6x^{3} + 5x^{2} - 5x - 3$$

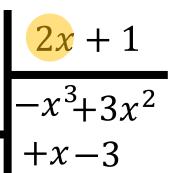
$$-6x^{3} + 3x^{2}$$

$$-6x - 3$$

$$-6x - 3$$

 $2x^2 - 5x - 3$

 $-2x^{2} + x$



Rational function

- It is in form of $f(x) = \frac{P(x)}{Q(x)}$ where $Q(x) \neq 0$
- Euclidean division can help to simplify f(x) or to write it in another form.

Example 1:

$$f(x) = \frac{x^3 - 3x^2 + x + 1}{x^2 - 1}$$

Notice that 1 is a root of the numerator: $(1)^3 - 3(1)^2 + 1 + 1 = 0$

So it is divisible by x - 1

Using Euclidean division we get:

$$x^3 - 3x^2 + x + 1 = (x - 1)(x^2 - 2x - 1)$$

$$f(x) = \frac{(x-1)(x^2-2x-1)}{(x-1)(x+1)} = \frac{x^2-2x-1}{x+1} \quad ; x \neq \pm 1$$

Rational function

- It is in form of $f(x) = \frac{P(x)}{Q(x)}$ where $Q(x) \neq 0$
- Euclidean division can help to simplify f(x) or to write it in another form.

Example 2:

$$f(x) = \frac{x^2 - 2x - 1}{x + 1}$$

We can change the form of f(x):

$$f(x) = \frac{(x+1)(x-3)+2}{x+1} = \frac{-3x}{-3x}$$

$$= \frac{(x+1)(x-3)}{x+1} + \frac{2}{x+1}$$

$$= x - 3 + \frac{2}{x+1} = \text{quotient} + \frac{\text{remainder}}{\text{divisor}}$$

Application

Consider the polynomial $P(x) = x^3 + mx^2 + 7x + 3$

- 1) Find m so that x + 3 is a factor of P(x).
- 2) Factorize P(x).

1)
$$x + 3$$
 is a factor of $P(x)$ so -3 is a root.

$$P(-3) = 0$$

$$(-3)^3 + m(-3)^2 + 7(-3) + 3 = 0$$

$$-27 + 9m - 21 + 3 = 0$$

$$9m - 45 = 0$$

$$m = \frac{45}{9} = 5$$

Application

Consider the polynomial $P(x) = x^3 + mx^2 + 7x + 3$

- 1) Find m so that x + 3 is a factor of P(x).
- 2) Factorize P(x).
- 2) Dividing P(x) by x + 3 using long division we get:

$$P(x) = (x+3)(x^2 + 2x + 1) = (x+3)(x+1)^2$$

